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Abstract  

A new technique for approximating the scattering of laser light by biological cells is reported. 
This technique is based on a three-dimensional scalar wave equation approximation of the full 
Maxwell's field equations for the electromagnetic field. This scalar wave equation for 
describing the light scattering patterns of cells containing arbitrary morphological structure 
(e.g., various organelles) is solved numerically using a spectral method. The accuracy of the 
spectral numerical method is verified by comparison with solutions obtained from linear 
perturbation theory and Mie theory. Comparison with Mie theory shows that the 
three-dimensional scalar wave equation is a good approximation to the full Maxwell's field 
equations for light scattering up to moderate forward scattering angles (i.e., for scattering 
angles less than about 35°). The approximate technique used here is capable of correctly 
predicting the scattered intensity patterns from biological cells over a dynamic range spanning 
six orders of magnitude. The new technique can be applied to calculate the light scattering 
either from an individual biological cell and from a sample containing an ensemble of such 
biological cells. The scattering intensity patterns predicted using the new technique can 
potentially be applied to diagnose the size and internal structure of biological cells, making it a 
valuable interpretative tool in flow cytometry (e.g., in the detection of rare event cells such as 
those resulting from a biological warfare agent attack, or for the rapid noninvasive optical 
assessment of tissue pathology in the detection of cancerous cells). 
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Resume  

On documente ici une nouvelle technique faisant une approximation de la diffusion de la 
lumiere laser au moyen de cellules biologiques. Cette technique est basee sur 
l'approximation d'une equation d'onde scalaire tri dimensionnelle des equations completes 
de Maxwell pour le champ electromagnetique. Cette equation d'onde scalaire visant ä 
decrire les modeles de diffusion de la lumiere de cellules contenant une structure 
morphologique (par ex.: organelles variees) est resolue numeriquement au moyen d'une 
methode spectrale. Inexactitude de cette methode numerique spectrale est verifiee en 
comparant avec des solutions obtenues ä partir de la theorie de la perturbation lineaire et de 
la theorie Mie. La comparaison avec la theorie Mie indique que l'equation d'onde scalaire 
tri dimensionnelle est une bonne approximation des equations completes de Maxwell, en ce 
qui concerne la diffusion de la lumiere, tant que ces angles diffusent moderement vers 
l'avant (angles de diffusion de moins de 35° ä peu pres). La technique appropriee utilisee ici 
est capable de predire correctement les modeles d'intensite diffuses ä partir des cellules 
biologiques ä une echelle dynamique comprenant six ordres de magnitude. La nouvelle 
technique peut etre appliquee ici pour calculer la diffusion de la lumiere ä partir aussi bien 
d'une cellule biologique individuelle que d'un echantillon contenant un ensemble de ces 
cellules biologiques. Les modeles d'intensite de diffusion, predits en utilisant la nouvelle 
technique, peuvent etre appliques au diagnostic de la taille et de la structure interne des 
cellules biologiques et devenir un outil d'interpretation precieux en cytometrie de flux (par 
ex.: dans la detection de cellules rares telles que celles resultant d'une attaque d'agent de 
guerre biologique ou bien pour 1'evaluation optique rapide non effractive de la pathologie 
des tissus, en ce qui concerne la detection de cellules cancereuses. 
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Executive summary 
Background 

A high priority of any biological warfare (BW) agent defence system is the triggering/cueing 
of the system in the presence of incoming aerosol clouds that may contain the presence of BW 
agents, followed by the initiation of paniculate air sampling required for the subsequent 
detection and identification of the putative agent in order to warn the user of the presence of a 
BW agent cloud. In this regard, the problem of the detection of BW agents (e.g., bacteria, 
viruses) based on some small set of quantifiable properties that can be shown to differ from 
their immediate background clutter is of great interest. Indeed, this problem was emphasized 
by Brigadier General Doesberg (Commander, Joint Program Office for Biological Detection, 
Alexandria, VA) who in his keynote address to a 1996 Edgewood Research, Development, and 
Engineering Center (ERDEC) scientific conference emphasized that "the major deficiency of 
our biological detection system is the lack of a reliable triggering/detection device". 

The key problem that arises in the detection of a BW agent is to distinguish unambiguously the 
putative presence of a pathogenic bio-target (B W agent) against the ambient background 
clutter (which can consist of inorganic matter such as Sulfates and nitrates and live 
non-pathogenic matter such as pollen, fungi and bacteria). Most BW agent detection systems 
involve drawing an ambient air sample through a laser-illuminated sampling volume where 
airborne particles scatter light and/or undergo particle fluorescence. Hence, increasing the 
present understanding of the interaction of laser light with biological cells can potentially 
improve the ability of current BW agent detection systems to discriminate between a target 
BW agent and environmental interferents. Understanding the relationship between measured 
scattered light properties and physiological differences at the cellular level is fundamental to 
providing a high degree of selectivity for B W agents in current B W detection systems and 
constitutes the main challenge for the modelling of light scattering from biological cells. 

Principal Results 

In this report, we develop a simplified mathematical model for the interaction of laser light 
with biological cells. In this approach, the full set of Maxwell's field equations is reduced to a 
wave equation for the electric field. This wave equation is solved numerically using a spectral 
method. This method provides a computationally efficient numerical scheme that can be used 
to predict the light scattering intensity pattern from either a single biological cell or a sample 
containing many biological cells. 

The accuracy of the spectral numerical method is verified by comparison with solutions 
obtained from linear perturbation theory and Mie theory. Comparison with Mie theory shows 
that the three-dimensional scalar wave equation is a good approximation to the full Maxwell's 
field equations for light scattering up to moderate forward scattering angles (i.e., for scattering 
angles less than about 35°). The approximate technique used here is capable of correctly 
predicting the scattered intensity patterns from biological cells over a dynamic range spanning 
six orders of magnitude. The new technique can be applied to calculate the light scattering 
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either from an individual biological cell and from a sample containing an ensemble of such 
biological cells. The scattering intensity patterns predicted using the new technique can 
potentially be applied to diagnose the size and internal structure of biological cells, making it a 
valuable interpretative tool in flow cytometry (e.g., in the detection of rare event cells such as 
those resulting from a biological warfare agent attack, or for the rapid noninvasive optical 
assessment of tissue pathology in the detection of cancerous cells). 

Significance and Future Plans 

To improve the performance of BW agent detection systems, it is necessary to understand the 
relationship between optical and biological properties of BW agents (bacteria, viruses, 
ridkettsiae). A model designed to provide insight into the relationship between the scattering 
properties of a biological cell and its morphology has been developed in this study. The model 
can potentially be used to provide deeper insights into the characteristics of laser light 
scattering from biological cells. In consequence, this fundamental understanding may lead to 
an improved ability to discriminate biological agents from other harmless biological and 
non-biological materials present in the ambient environment. 

The model developed here provides a capability for interpreting laser light scattering patterns 
from BW agents, and in particular for assessing cellular morphology from scattering 
measurements. This will lead to the development of novel analysis methods for flow cytometry 
which in turn can lead to improvements in BW agent detection. Future work should focus on 
incorporating a detailed numerical model for prediction of light scattering from biological 
ceils with a new generation of micro-cytometers (viz., flow cytometry undertaken on a 
microchip) that would allow a more precise interpretation of the data obtained from such a 
device (and, particularly, in relation to the extraction of morphological parameters from BW 
agent cells based on scattering measurements). 

Shao, Y. and Yee, E. (2004). An Approximate Method for Modelling Laser Light Scattering 
from Biological Cells. (DRDC Suffield TR 2004-187). Defence R&D Canada - Suffield. 
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Sommaire 

Contexte 

La grande priorite d'un Systeme de defense contre un agent de guerre biologique (BW) est 
d'etre en mesure de se declencher ou de signaler l'arrivee de nuages aerosol pouvant contenir 
des agents BW, puis d'amorcer l'echantillonnage d'air particulier requis pour detecter et 
identifier ulterieurement l'agent putatif, ceci visant ä prevenir l'utilisateur de la presence d'un 
nuage d'agents BW. Ä cet egard, il devient tres interessant d'etudier le probleme de la 
detection des agents BW (par ex.: bacteries, virus) en se basant sur un certain petit ensemble 
de proprietes quantifiables pouvant demontrer qu'un agent differe du fouillis de son 
environnement immediat. Ce probleme a ete certainement souligne par le brigadier general 
Doesberg (Commandant du Bureau commun du programme de detection biologique, 
Alexandria, VA). Dans son discours liminaire ä la conference scientifique de Edgewood 
Research, Development, and Engineering Center (ERDEC), en 1996, il a souligne que 
« l'inconvenient majeur de notre Systeme de detection biologique est le manque d'appareil de 
declenchement et de detection fiable ». Le probleme cle de la detection d'un agent BW est la 
difficulte de distinguer sans ambigui'te la presence putative d'une cible biologique 
pathogenique (agent BW) dans le fouillis ambiant de son environnement (pouvant consister en 
matiere non organique teile que les Sulfates et les nitrates et de matiere vivante non 
pathogenique teile que le pollen, champignons microscopiques et bacteries). La plupart des 
systemes de detection d'agents BW consistent ä retirer un echantillon d'air ambiant ä l'aide 
d'un volume d'echantillon illumine au laser dans lequel les particules aerosol diffusent la 
lumiere et / ou la particule devient fluorescente. Ainsi, une meilleure comprehension de 
l'interaction entre la lumiere laser et les cellules biologiques peut sans doute ameliorer la 
capacite des systemes actuels de detection d'agents BW ä discriminer entre un agent BW cible 
et ses interferents environnementaux. II est fondamental de comprendre la relation entre les 
proprietes de la lumiere diffusee mesuree et les differences physiologiques au niveau 
cellulaire, pour fournir un haut niveau de selectivity en ce qui concerne les agents BW dans 
les systemes actuels de detection BW et constitue le defi principal dans le domaine de la 
modelisation de la diffusion de la lumiere. ä partir de cellules biologiques. 

Resultats principaux 

Dans ce rapport, nous developpons un modele mathematique simplifie de l'interaction de la 
lumiere laser avec les cellules biologiques. Cette methode reduit l'ensemble complet des 
equations de Maxwell ä une equation d'onde pour le champ electrique. L'equation d'onde est 
resolue numeriquement en utilisant une methode spectrale. Cette methode fournit un schema 
de calcul numerique efficace pouvant etre utilise pour predire le modele de l'intensite de la 
diffusion de la lumiere ä partir soit d'une seule cellule biologique soit d'un echantillon 
contenant beaucoup de cellules biologiques. 

L'exactitude de cette methode numerique spectrale est verifiee en comparant avec des 
solutions obtenues ä partir de la theorie de la perturbation lineaire et de la theorie Mie. La 
comparaison avec la theorie Mie indique que l'equation d'onde scalaire tri dimensionnelle est 
une bonne approximation des equations completes de Maxwell, en ce qui concerne la 
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diffusion de la lumiere, tant que ces angles diffusent moderement vers l'avant (angles de 
diffusion de moins de 35° ä peu pres). La technique appropriee utilisee ici est capable de 
predire correctement les modeles d'intensite diffusee ä partir des cellules biologiques ä une 
echelle dynamique comprenant six ordres de magnitude. La nouvelle technique peut etre 
appliquee ici pour calculer la diffusion de la lumiere ä partir aussi bien d'une cellule 
biologique individuelle que d'un echantillon contenant un ensemble de ces cellules 
biologiques. Les modeles d'intensite de diffusion, predits en utilisant la nouvelle technique, 
peuvent etre appliques au diagnostic de la taille et de la structure interne des cellules 
biologiques, ce qui les rend un outil d'interpretation precieux en cytometrie de flux (par ex. : 
dans la detection de cellules rares telles que celles resultant d'une attaque d'agent de guerre 
biologique ou bien encore pour 1'evaluation optique rapide non effractive de la pathologie des 
tissus, en ce qui concerne la detection de cellules cancereuses. 

La portee des resultats et les plans futurs 

II est necessaire de comprendre la relation entre les proprietes optiques et biologiques des 
agents BW (bacterie, virus, rickettsie) pour ameliorer la performance des systemes de 
detection d'agents BW. Cette etude a developpe un modele concu pour procurer une 
connaissance plus approfondie de la relation entre les proprietes de diffusion d'une cellule 
biologique et sa morphologic II est possible que ce modele soit utilise pour acquerir une 
connaissance plus profonde des caracteristiques de la diffusion de la lumiere laser ä partir de 
cellules biologiques. Cette connaissance fundamentale peut, par consequent, aboutir ä 
l'amelioration de la capacite de discriminer les agents biologiques de ceux qui sont moins 
dangereux et des materiaux non biologiques qui sont presents dans l'environnement ambiant. 

Le modele developpe ici donne la capacite d'interpreter les modeles de diffusion de lumiere 
laser ä partir d'agents BW. II permet surtout d'evaluer la morphologie cellulaire ä partir des 
mesures prises pendant la diffusion. Ceci amenera ä la mise au point de methodes d'analyse 
nouvelles pour la cytometrie de flux qui ä son tour peut aboutir a l'amelioration de la 
detection d'agent BW. Les travaux futurs devraient se concentrer sur 1'incorporation de 
modeles numeriques detailles pour la prediction de la diffusion de la lumiere ä partir de 
cellules biologiques avec une nouvelle generation de micro-cytometres (viz., cytometrie de 
flux entreprise sur un microcircuit integre) qui permettrait une interpretation plus precise des 
donnees obtenues ä partir d'un tel appareil (et surtout celles en rapport avec 1'extraction de 
parametres morphologiques ä partir de cellules d'agents BW, basee sur les mesures prises 
durant la diffusion). 

Shao, Y. and Yee, E. (2004). An Approximate Method for Modelling Laser Light Scattering 
fromBiological Cells. (DRDC Suffield TR 2004-187). R&D pour la defense Canada - Suffield. 
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Introduction 

Lasers have several unique properties, such as rnonochromaticity, high power, short pulse 
duration, and coherence, which are particularly useful for biological agent detection and 
bio-medical applications. Laser medicine is now a rapidly growing research field. The 
increasing use of laser light for detection of biological warfare (BW) agents and for diagnostic 
and therapeutic medicine has created a need to understand how laser light interacts with 
biological cells and propagates through biological tissue. This understanding would result in 
improved BW agent detection by providing a quantitative interpretation of the signals that are 
measured, and in bio-medical applications would enable the quantitative analysis of diagnostic 
measurements leading potentially to an optimal development of therapeutic techniques. 

There are five main categories [1, 2, 3] of photo-physical processes in the interaction of laser 
light with biological tissues. These are non-destructive photo, photo-chemical, photo-thermal, 
photo-ablative and photo-mechanical interactions. Non-destructive photo interactions mainly 
concern laser light propagation and scattering in biological tissue, which can be used both for 
imaging and diagnostics. Photo-chemical interactions involve the absorption of light by 
specific molecules that are either present in, or added to, a biological tissue sample. Such 
interactions are the basis for photo-dynamic therapy. Photo-thermal interactions are those 
where the observed biological effect is due to the deposition of heat in the tissue. Most current 
laser surgery, such as welding and coagulation, for example, falls into this category. 
Photo-ablative interactions can occur when photons have sufficient energy to cause the 
dissociation of biopolymers with a subsequent desorption of the resulting fragments. The 
threshold power density for this effect to occur is approximately 108 W cm-2 for 10 ns laser 
pulses. Photo-mechanical interactions occur at fiuence rates of approximately 1010 W cm-2 

for nanosecond laser pulses and 1012 W cm-2 for picosecond pulses. When these pulses 
illuminate the biological tissue, the dielectric of the tissue experiences a breakdown, and a 
small volume plasma is produced. The expansion of this plasma creates a shock wave which 
can mechanically rupture the tissue. These last two types of interaction are complex in terms 
of their occurrence thresholds and concomitant nonlinear effects. 

In this report, we will focus on non-destructive photo interactions of laser light with biological 
cells, where the optical properties of the biological cell are time invariant and are independent 
of the probing light field. Optical properties of biological tissue and cells are very important 
for a wide range of studies ranging from detection/imaging and diagnostic applications, such 
as cytometry [4], confocal [5] and optical coherence tomography [6] imaging, and 
fundamental investigations of the sensitivity of a biological cell to light sources [7]. When 
laser light enters a biological sample, it can be scattered and absorbed. The relative probability 
of these processes in a given biological cell or tissue sample depends on the laser wavelength 
[8]. In these applications, laser light from the blue to near-infrared parts of the spectrum is 
predominantly scattered from local variations in the refractive index between different parts of 
the biological cell. 

Cytometry is the measurement of physical and/or chemical characteristics of biological cells 
(e.g., bacteria, viruses, etc.). Flow cytometry [9] is a process in which such measurements are 
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made while the cells or particles are passing through a sampling volume in a fluid stream. 
During the past 30 years, sophisticated improvements have made flow cytometry a powerful 
and valuable tool for the quantitative analysis of individual cells or other biological particles. 
A flow cytometer is an instrument, which can be used to obtain quantitative information based 
on light scattering or fluorescence emission caused by individual cells (or particles) as they 
flow rapidly in a fluid stream in front of a light source [4]. The components of a flow 
cytometer usually include a light source (normally a laser); a sample chamber with a flow cell 
and a sheath fluid stream; a photodetector or photomultiplier tube (PMT) that collects light and 
converts it to an electronic signal; a signal processing system that converts the signal from an 
analog form to a digital format; and a computer to direct operations, store the collected signals, 
and display data [10]. With the combination of state-of-the-art advances in computer and laser 
technology, more sophisticated flow cytometers have been developed to obtain objective and 
precise measurements of multiple characteristic parameters of an individual cell at one time. 
Such parameters include cell size, cell shape, and cell refractive index. Recently, flow 
cytometers [e.g., Los Alamos National Laboratory flow cytometer and the Becton Dickenson 
Flow Cytometer (FACSCaliber)] have been used in bio-detection to determine if particulates 
collected are biological or inorganic in origin. 

Understanding relationships between the measured scattered light properties and physiological 
characteristics at the cellular level in the biological cell is fundamental to the usefulness of 
optical diagnostics (e.g., use of flow cytometry for bio-detection) and constitutes the main 
challenge for the modelling of laser light scattering from cells. The complexity of the 
scattering media, coupled with comparable spatial scales of inhomogeneity in the dielectric 
constant and the laser wavelength, limits an analytical approach to the scattering problem. 
Several numerical procedures have been adoped to deal with the laser light-cell scattering 
problem from their original physical and engineering applications. 

The most complete numerical method is based on the finite-difference time-domain (FDTD) 
algorithm, which was originally proposed [11] as the method to solve the full set of Maxwell's 
equations. Since this seminal work, the numerical solution of Maxwell's equations using the 
FDTD method has been applied to perform electromagnetic simulations in many areas in 
electrical engineering and related fields such as microwave engineering, remote sensing and 
subsurface sensing, antenna analysis and design, radar cross-section analysis and design, 
stealth technology, wireless communication and propagation, and electromagnetic 
compatibility and electromagnetic interference (EMC/EMI). It is only very recently that some 
preliminary effort has been expended on the application of electromagnetic simulations to 
address bioengineering and biotechnology problems. In a recent implementation of the FDTD 
algorithm to the light-cellular scattering problem [12], [13], the biological cell has been 
modelled through the inhomogeneous refractive index of its different structures (organelles). 
The FDTD approach requires large computational resources both in terms of memory and time 
because the FDTD algorithm solves for the full vector electric and magnetic fields and 
resolves their evolution on the time scale of a laser light period. 

The Monte Carlo (MC) method is a technique first proposed to simulate physical processes 
using a stochastic model [14] and it has been used to solve a variety of physical problems. 
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Recently, MC simulations of photon propagation provide a flexible, yet rigorous, approach 
toward photon propagation in turbid tissues [15]. It should be pointed out that the MC 
simulations are rigorous, but necessarily statistical in nature and, therefore, require significant 
computation time to achieve the required precision and resolution. An alternative to the FDTD 
and MC methods is the discrete dipole approximation [16], [17], in which a particle is divided 
into subvolumes that are assumed to behave as dipoles. 

In summarizing, the FDTD and MC methods are the two mainstream numerical methods for 
modelling laser light propagation and scattering from biological cells and tissues. The MC 
method efficiently describes multiple scattering from cells. However, it is not well suited to 
addressing scattering from a single cell. On the contrary, the FDTD method accurately 
describes scattering from a single cell, but its application to multiple cell scattering results in 
computational requirements that increase dramatically with an increase in the size of the 
computational domain. In view of this, the objectives of this report are: (1) to develop an 
approximate technique that can be used to predict the scattering intensity patterns from 
samples consisting of single or multiple biological cell(s); and, (2) to develop, implement, and 
validate a computer simulation code based on this technique for the modelling and prediction 
of laser light scattering from biological cells. 

The proposed new approximate method for modelling laser light scattering from biological 
cells is based on a simplified mathematical model of light propagation. The resulting equations 
of this method are solved numerically using a spectral algorithm. The results of numerical and 
analytical studies of light scattering from two-dimensional (2-D) and three-dimensional (3-D) 
cell geometries are presented in this report. In the 2-D cellular scattering studies, the relative 
change in the angular distribution of scattering intensity due to the internal cell structure, 
shape, size, and refractive index can be addressed more easily than in three dimensions because 
the computational burden and memory requirements are smaller. Examples of multiple 
scattering processes (i.e., dependence of the scattered light characteristics on the number of 
scatterers and density of cells in the sampling volume) are provided for 2-D cell geometries. 

In our approximate simulation approach, the full set of Maxwell's equations is reduced to a 
wave equation for the electric field. Further approximations include the elimination of high 
frequency (coo) oscillations (carrier frequency of the electromagnetic wave) by enveloping the 
field amplitude variations that occur on an C0Q ' time scale, which reduces the order of the time 
derivative in the wave equation (a detailed explanation of this process is provided later in 
Section 2). As compared, for example, to numerically solving the full set of Maxwell's 
equations, we have reduced the number of equations to solve, eliminated the need for temporal 
resolution on an C0Q ' time scale, and by applying the spectral method [18] for the numerical 
solution of the resulting equation have enabled the scattering intensity distribution to be 
accurately calculated using six grid points per laser wavelength. By reducing the numerical 
requirements to obtain a solution, we have developed an effective algorithm, which could be 
applied to studies of scattering from a single biological cell as well as from a sample 
consisting of ensemble of many biological cells. 
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The Computational Model  
Basic Equations of the Approximate Model 

The computational model used for the scattering problem considered in this report is based on 
solving the wave equation for the amplitude of the laser light using the spectral method. This 
method allows us to model the interaction of laser light with biological cells whose physical 
size can vary over a wide range of spatial length scales, from sub-wavelength dimensions up to 
a few orders of magnitude larger than the laser wavelength. 

Maxwell's equations in a nonconducting medium take the following form [19] (in Gaussian 

units): 

(1) Ve£  =  0, 

(2) V-5 =  0, 

„     „      13B 
(3) VxE + ~c^l  =  °' 

„    -    uzdE 
(4) ""-7*   = 0l 

where E and B are the electric and magnetic fields, respectively; c is the speed of light in 
vacuum; and fi and e are the magnetic permeability and the dielectric constant (or, electric 
permittivity) of the medium, respectively. By taking the curl of Eq. (3) and substituting for 
V x B from Eq. (4), we deduce the following wave equation for the electric field; namely, 

(5) ^_V2£ + V(V.£)=0, 

where we have used the vector identity 

V x (V x A) = V(V • A) -V2A, 

and the fact that the operators V x | and |Vx are equivalent (i.e., V and | commute) as 
space and time coordinates are independent. Here, V2 = d2/dx2 + d2/dy2 + d2/dz2 denotes the 
Laplacian in a three-dimensional Cartesian geometry. 

For an electromagnetic wave with high frequency co0 say, the electric field vector takes the 
form 
(6) E = £(.v,y,z,0exp(-/co0/)+c.c., 

where c.c. denotes the complex conjugate of the first term on the right-hand side of this 
equation. Here, co0 can be interpreted as the carrier frequency of the electromagnetic wave. It 
is assumed that the amplitude E(x,y,z,t) varies on a characteristic time scale that is much 
larger than the light period 2rc/co0. In view of this assumption, enveloping Eq. (5) with respect 

to time (viz., inserting Eq. (6) into Eq. (5) and ignoring the small-order term ^f < <°o-gr)> 
reduces the order of the time derivative from two to one. In consequence, one obtains 

(7) 2Ä4 + V2I + ^-V(V.£) = 0. v ' c2     at cl 
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As a further simplification, we develop a wave equation model for a one-component field (i.e., 
a scalar wave equation model). For the one-component field case, we consider the scattering of 
laser light by a biological cell (tissue) in two and three spatial dimensions. A 2-D scalar wave 
equation can be obtained from Eq. (7) by assuming that the biological cell is inhomogeneous 
(in electric permittivity) in the x-y plane only and that the electromagnetic wave is s-polarized 
[viz., E — E(x,y,t)ez (where ez is a unit vector normal to the x-y plane) so that the electric field 
polarization vector is perpendicular to the plane of inhomogeneity of the biological cell]. For 
this case, the last term on the left-hand side of Eq. (7) is zero, and one obtains a scalar wave 
equation for the electric field amplitude of the form E(x,y,t): 

(8) 2Ä^ + V^ + ^ = 0, 
cl     at cL 

where V\ = d2/dx2 + 32/3y2 is the Laplacian in two spatial dimensions. 

The scalar field approximation can be also considered in three spatial dimensions. The form of 
the wave equation for the 3-D scalar field approximation is similar to that of Eq. (8), except 
that the Laplacian V2 has three spatial components. For the case of three spatial dimensions, 
the last term on the left hand side of Eq. (7) may not be negligible. The validity of such an 
approximation will be tested by comparing simulation results with exact analytical solutions 
(Mie theory) for scattering from a homogeneous spherical dielectric. 

For a biological cell, we assume fi = 1 (non-magnetic), and that the dielectric constant can be 
represented as a sum of two terms: 

(9) e = £o + Ae(;c,>>,z). 

Here £o is the dielectric constant of the background fluid (fluid surrounding the biological cell) 
that is considered homogeneous, and (EO + A£(;c,y,z)) is the dielectric constant of a cell that 
consists of cytoplasm, nucleus, and other internal structures and organelles. We note that in 
Eq. (9) that e is real since only light scattering (and, not absorption) is considered. 
Furthermore, measurements of the optical properties of Erwinia herbicola bacteria [20] have 
shown that the imaginary part of the complex index of refraction N = \/E is approximately 
four orders of magnitude smaller than the real part, implying that the extinction (or, 
absorption) of light in the biological cell is negligible relative to the light scattering. Hence, an 
arbitrary cell model can be constructed by simply assigning real dielectric constant (or, real 
electric permittivity) values to each cell component. For the cells considered in this report, the 
perturbations Ae are assumed to be small (viz., | Ae| <C £o). 

It is readily seen that the first term on the left-hand side of Eq. (8) accounts for time variations 
of the electric field amplitude. In the case of interest to us, the biological cell properties are 
considered to be stationary. Non-stationarity can only play a role during the propagation of the 
electromagnetic wave front through the biological cell. Hence, £ can be replaced by £o in the 
time derivative term in Eq. (8), allowing us to rewrite this equation as (for 2-D and 3-D cell 
geometries) 

(10) 2/\^ + V2£ + %QE = -4/(0 AEE. 
cL     at cz cL 
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The time function f{t) is introduced on the right-hand side of Eq. (10) to model an adiabatic 
"turn on" of the perturbations with the property that f{t) = 0 at t = 0 and f{t) -> 1 as t -»°°. 
Fig. 1 shows the time function /(f) that was used for the simulations in this report. This time 
function f(t) allows one to define an easy problem for which we know the solution (e.g., when 
f(t) = 0 at t = 0 corresponding to the case of an electromagnetic wave propagating through a 
homogeneous medium with no scatterer), and a "path" between this easy problem and the hard 
problem that we actually wish to solve (viz., electromagnetic scattering from the biological cell 
which is fully "turned on" in the simulation when f{t) -»• 1 for large t). Hence, the solution to 
the easy problem is gradually transformed to the solution of the hard problem by tracing this 
path (which is defined by f{t) increasing monotonically from 0 at t = 0 to 1 at large t). 
Though the unit off is arbitrary, for the simulations conducted in this report we will normalize 
the time steps so that t is measured in units of picoseconds (see details in the next section). 

The left-hand side of Eq. (10) accounts for the field propagation in a homogeneous medium, 
and the interaction with inhomogeneous perturbations (biological cell) is described by the 
right-hand side. There are no restrictions in our model on the scale length of spatial variations 
in Ae. However, inhomogeneities in the scattering medium on a scale length much smaller 
than the laser wavelength cannot be properly resolved in the scattered light intensity pattern. 
Therefore, we assume that the characteristic length scale of the spatial inhomogeneity for the 
perturbation Ae is larger than the laser wavelength Xm = c/(co0y^ö) in the background (or, 
surrounding) medium. Inhomogeneities on a scale length smaller than the wavelength \m (for 
example, the interface between the cell and the surrounding fluid, or cell wall) are treated as 
sharp boundaries in our method. This approach is consistent with the fact that light scattering 
off an interface much narrower than the wavelength is similar to scattering off a sharp 

boundary. 

Application of Spectral Method 

The wave equation [Eq. (10)] is solved in a three-dimensional domain defined as follows: 
0 <.v < Lx, -Ly/2 < v < Ly/2 and -Lz/2 <z< L-J2 (see Fig. 2). The incident 
electromagnetic wave is assumed to be propagating in the x-direction. Eq. (10) will be solved 
using the spectral method [18]. In this method, the electric field amplitude E is expanded as a 
Fourier series in the transverse (y and z) directions as follows: 

(ii) E = YJ YlEmm' (*>')exp (imkyy+im'kzZ^' 
m     m' 

where ky = 2n/Ly and kz = 2n/Lz are the wavenumbers in the v- and z-directions, respectively. 
We now introduce the following dimensionless variables: 

T = ßcoof/eo, 

X = kx, 

Y = ky, 

(12) Z = kz, 

where k = 2nN/'ko, with ^ = c/coo being the laser wavelength in vacuum and N = v^ö being 
the background medium refractive index in the simulation region; and, ß is a dimensionless 
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parameter which is used to renormalize the time T to some convenient unit (picoseconds, for 
example). Using these non-dimensional spatial and temporal variables and the spectral form 
for the electric field amplitude E exhibited in Eq. (11), Eq. (10) can be re-cast in the following 
form: 

(13) (2®^ + ^ +4„,j Emm, = NL{Emm,,T), 

where 

NL{Emm>J)  =  -Aef(t)Emm', 

(14) K2
Xmm,   =  to-imky/tf-im'h/kf. 

The variation of the electric field amplitude E in the longitudinal (x) direction is approximated 
using Chebyshev polynomials Tn(x) of the first kind, which constitute an orthogonal family on 
the interval -1 < x < 1 with a weight function 1/Vl —-t2. To facilitate this approximation, the 
extent of the simulation region in the direction of laser light propagation [0,LX] is mapped into 
the interval [-1,1]. Now, Emmi (X, T) inEq. (13) is approximated as 

Nx+\ 

(15) Emm,(X, T) = £ a^T)T«-1V0■ 

The use of Chebyshev polynomials evaluated at collocation (grid) points Xj given by 
Xj = - cos ((y - \)%/Nx), where j = 1,2,..., Nx + 1 and Nx is the total number of points in the 
x-direction allows a fast Fourier transform (FFT) to be used to evaluate ak(T) in 
0((NX + 1) \og(Nx + 1)) operations. Finally, Chebyshev polynomials permit accurate 
determination of the spatial derivative d2Emm'/dX2 in Eq. (13). 

The spectral method used here is more accurate per nodal unknown than any local method 
(e.g., finite difference, finite volume, or finite element method). For problems with sufficiently 
smooth solutions and benign (e.g., periodic) boundary conditions, the spectral method results 
in a considerable computational efficiency. 

Time-stepping Procedure 

We use the implicit midpoint rule [21] for the time-stepping of Eq. (13). The implicit midpoint 
method solves a differential equation of the following form 

it =p(u)u. 

where p{u) is a given function of the quantity u. For a step in time u" —> u"+l, 
t„ —>t„+\ =tn + x, where T is the time-step size and u" is the quantity u at t = t„, the implicit 
midpoint rule reads 
(16) u"+l =M" + T/>(«)U, 
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where ü = (w"+1 + u")/2 is the midpoint value of u. A solution un of Eq. (16) is bounded as 
n —► oo [22]. 

Now, it is convenient to rewrite Eq. (13) as 

(17) 
dEmm>       i   ( d2    , „i NL(Emm>,T)\ p 

dr     2ß ydx2 

In order to advance Eq. (17) one time-step, the forward Euler scheme is used to provide a 

provisional estimate £*(^+1) for £"+! as 

(18) 
P*(»+l) _  pn       I   -^»-m' 

which can be used with En
mm, to obtain an estimate for the midpoint value 

pn     ~ 1 (pn      ,   E<*("+1)\. 

(19) "mm' ~ ümm' i" 40 dx2 

where Eq. (17) has been used to estimate dEmm>/dT\n. From the implicit midpoint rule 
[cf.Eq.(16)],weget 

(20) 7«+l _ rr" ix pn+l     17« I 
"mm'       "mm' "•" 2ß 

r 32       „2 NL(Emm>,Tn) 

Substituting Eq. (19) into Eq. (20), assuming that NL(£mm>, T") = NL{En
mm,,T

n), and 
re-arranging the resulting equation we get 

(21) pn+\ — £•"     _i_ _ 
"mm' mm1 ~ 40 ax2 + Kxmm' 

IX 
E"m+m'-^{Emm,J"), 

which can be rewritten as follows 

(22) {^-^)K+J^Emml+NL{EmmlJ^ 

where X = -K\mm, - i'4ß/x. The length of the simulation region in the direction of light 
propagation is mapped into interval [-1,1] and, therefore, Eq. (22) is a Dirichlet problem for a 
second-order elliptic operator in the interval [-1,1], which we may solve efficiently using the 
Tau method [18]. 

Boundary Conditions 

Among the issues facing the implementation of the numerical algorithms for simulation of 
electromagnetic fields in complex environments is the proper truncation of the computational 
domain. In our situation, the problem to be simulated corresponds to an open-region problem, 
and the numerical implementation requires a proper treatment of the grid boundaries. Due to 
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the properties of the Fourier transform, the imposed boundary conditions are implicitly 
periodic in the transverse (Y and Z) directions. The boundary conditions in .^-direction 
correspond to transparent boundaries at X = X; — 0 (left side domain boundary) and 
X = Xr = koLx (right side domain boundary) for both the incident and scattered waves [23]: 

dEm 

dX X, 

=  iKXmm, (lE[Z{T)-Emml{XhT)+ 

iß   a 
KlmmldT 

(23) 
dEn 

dX 
=  iKXl 

EZ{T)-Emm,{XhT) 

Xr 

"im" i 1 + ~~pi      KZ; I Emmi(Xr,T), 
KXmm' 6T 

where E^^T) is the Fourier component of the incident electric field amplitude. The 
transparent boundary conditions imposed here in the longitudinal direction ensure that 
spurious reflections from the grid boundaries at X\ and Xr are small enough so that the solution 
is not contaminated. 

The Shape of the Incident Beam 

Two kinds of incident beam shapes are used in our simulations. Firstly, the simplest case is 
that of an incident plane wave. Secondly, we consider the Gaussian beam [24] 

E0(x = 0,y,z,t)   = E0(t)-—^exp 
y>+z2 

2 

(24) xexp -jkx-jk ■ jf+Z" 

2R2(x) ■yew 

where W{x) and R(x) are the beam radius and the wavefront radius, respectively, which take 
the following forms: 

(25) 

(26) 

(27) 

W(x) 

R(x)   = x 

1 + -V 
1/2 

l+[^ 
X 

C,(x)   —  arctan 
LR' 

where a is the minimum radius of the beam at the best focus position and LR is the Rayleigh 
length, which is the distance from the best focus position to where the beam radius increases 
by a factor of 2. The minimum radius of the beam is related to the Rayleigh length by 

(28) a = 
2K 
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where X, is the wavelength. The number / is defined to characterize the minimum radius of the 
beam a = fX at the best focus position and the /-number is also related to the Rayleigh length 
as LR = Infk. The Gaussian profile given in Eq. (24) is a reasonable realization of an actual 
incident laser beam as it might be found in an experimental setup, while the plane wave is a 
idealized profile for verifying the correctness of the simulation code, as it allows for a direct 
comparison with analytical solutions (e.g., Mie theory). 

Far-field Calculation 

An appropriate presentation of numerical data is very important for the comparison with 
experimental results and theoretical models. Typical experimental observations usually only 
measure the characteristics of the laser light well outside the interaction region (the region 
where the laser light interacts with the scatterer such as a biological cell). Therefore, the laser 
field profile far from the scattering object (so-called far-field region) should be calculated from 
the field distribution in the interaction region (so-called near-field region) which can be 
obtained through our numerical simulations. Using the near-field data obtained from our 
model simulations, this near-to-far-field transformation efficiently and accurately calculates 
the far-field scattering response of an illuminated bio-target (biological cell) without the need 
to extend the simulation domain to the far field to obtain the far-field data. 

An asymptotic expression for the electric field of the scattered light at a far-field point P (see 

Fig. 2) is given by [25]: 

(29) ~z-r-f 7exP(ikp(x.y,z) - in/4)V„Es(x,y\z,t)   , v    ' 2nkp{x,y,z) J 

where Es is the electric field at the emitting surface S, E{P,t) is the electric field at a far-field 
point P, V„ denotes the derivative along the outwardly-directed normal vector to the emitting 
surface, and p is the vector from the point at the emitting surface with coordinates (x,y,z) to 
the far-field point with coordinates {xQ,yo,z0). Furthermore, let p0 be the postion vector from 
the origin of the coordinate system to the far field point [viz., p~o = {xo,yo,zo)]- In °rder t0 

evaluate the surface integral of Eq. (29), we use a Cartesian geometry and let 

u = (\/2nkp(x,y,z)) exp(ikp(x,y,z) - in/4). 

Then the surface integral of Eq. (29) takes the form 

(30) E{P,t) = ^idS-{EVnu-uVHE). 

From Fig. 2, one can see that the planes ABCD and EFGH coincide with the inlet (x = 0) and 
outlet (x = Lx) boundaries. For forward scattering calculations, we consider only the 
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contributions due to plane EFGH, while for backward scattering calculations, we consider 
only the contributions due to plane ABCD. Hence, the integral of Eq. (30) reduces to 

The above result can be expressed in a somewhat more informative form if we rewrite p in 
terms of spherical coordinates (p,0, <p), where p = |p|. Also, we let po = |p*o| denote the 
distance from the origin of the coordinate system to the far field point. Using the following 
mathematical relationships 

dp/dx =  -x/p — — cos 9, 
du/dx =   (du/dp)(dp/dx) = -cos9(3w/3p), 

p  ~  po—xcosö —vsin6cos(() —zsin0sin((), 

lim w  =   —-— exp (ikpo — ikx cos 9 — iky sin 9 cos <|) 
p-»~ 2jt«po 

—ikz sin 9 sin (() — in/4), 

lim —  =  —-— exp (ikpo — ikx cos 9 — iky sin 9 cos § 
p-»°° dp        2nkpo 

(32) -zfosin9sin<j) — in/4), 

we have 

*<"•" - käs//** 
(33) x exp (—/fcccos9 — iky sin 9 cos (j) — /Azsin6sin<j>). 

-ikE cosQ — — 
ox 

By introducing kx = &cos0, ky — &sin0cos<|), kz = £sin9sin<]>, and taking into account that, in 
the case of forward scattering, E ~ exp (ikxx), one obtains from Eq. (33) that 

(34) E(P,t) = eXp(l"fP + /7l/4) [-2ikxzxp{-ikxx))E{Lx,kvA). 

Similarly, in the case of backward scattering, we have 

(35) E{P,t) = eXP(4^po
/7t/4) [2ikxexp(-ikxx)]E(0,ky,kz). 

Eq. (34) for E(P,t) has been used in our numerical simulations to calculate the forward 
scattered light intensity in the far-field region. The forward emitted power at a far-field point is 
then given by 

(36) Q= £fl\Wt)\2 = ^3*2 \ikxE(Lx,kyA)\2. 
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Code Implementation and Verification 

In the previous section, we presented the theoretical (albeit approximate) model equations 
upon which our numerical simulations are based. More specifically, we derived an 
approximate scalar 3-D wave equation from Maxwell's equations, described the numerical 
algorithm which we will use to solve this equation, and showed how to compute the scattering 
pattern in the far-field region using a near-field to far-field integral transformation. 

For the model equations described in the previous section for both 2-D and 3-D cell 
geometries, a computer code has been implemented to solve these model equations using the 
spectral method. Since the code is new, it needs to be verified before being used for any 
applications. In this section, results for both 2-D and 3-D cell gepmetries will be presented and 
verified against predictions obtained from linear perturbation theory and Mie theory, 

respectively. 

Linear Perturbation Theory Applied to 2-D Scattering 

In this subsection, an analytical stationary solution to Eq. (10) is obtained using the linear 
perturbation method. In the stationary regime, the time derivative term in Eq. (10) is 
identically zero. Now, consider the scalar wave equation [Eq. (10)] in two spatial dimensions. 
By assuming small-angle scattering, the field amplitude E can be written as 
E = Ea(x,y)exp(ik„,x), where km = 2n/Xm = (coo/c)^ is the laser wavenumber in the 
background medium. The characteristic inhomogeneity length scale of the field amplitude 
Ea(x,y) in the direction of light propagation (x) is assumed to be much larger than the laser 
wavelength in the background medium, so %m < |31n {Ea)/dx\-\ This is precisely the 
condition that is required for validity of the paraxial approximation. Expanding Ea = E0 + BE , 
where E0 is the incident light amplitude and 8£ is the scattered light amplitude (|8£| < |£o|), 
Eq. (10) to first order in 5£ and Ae assumes the form 

„ ,   d5E    d25E , cog 
(37) Mm— + _ + -£AeEo = 0. 

After performing a Fourier transformation in the transverse (y) direction, we obtain the 
following differential equation for the Fourier component of the electric field 8E(x,ky) : 

(38) 2ikm
dm£ky) -**mx,ky) + ^AE(x,ky)Eo = 0, 

where Ae(x,ky) is the Fourier transform of the permittivity perturbation Ae(.t,y) in the 
v-direction. The solution to Eq. (38) takes the form of the following integral transform 

(39) 5E(x,kv) = ^ fXdx'AE(x',ky)Sxp 
2kmcL J0 

The constant of integration in Eq. (39) is chosen so that the field perturbation 8£ is zero at the 

boundary x = 0. 
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For simplicity, consider a square perturbation of the dielectric constant Az(x,y) equal to Aeo in 
the region -Ro < x - XQ < Ro and -Ro <y<Ro, and zero elsewhere. By using the assumption 
that the incident light has a very small divergence angle (Eo(Lx,ky) « 0 for ky ^ 0), we may 
combine Eqs. (39) and (36) to obtain the transmitted power per unit angle as 

(40) 
SEI /Aeo\2 l-£    2 /2KRO   \     2 (nRo^ 

Q-nm{e0)     H   Sm [Xm 
k*)Sm U" 

where k* = ky/ko. 

Similarly, placing a square nucleus measuring 2Rn by 2R„ and dielectric constant perturbation 
Ae„ in the center of a cell with dimensions 2RQ by 2RQ and dielectric constant Aeo, the 
transmitted power per unit angle is 

(41) 

8E2
0  (AEo\2l-kl . 2 /2nR0, \   . 2 fnRo,7 

. ,'Ae„      \  .   {2%Ro. 
sin   -r— kt 

V A, 

A8o 

sin 
■m 

2 

1 )  sin 

(2nR„ 

V   hn 

V   ^n 

2 (2%Rn   \   . 2 (nR„ L ' k* ) sin^ \K k2 

+ 

k-H^)+ 

Ask, 0, Eq. (41) takes the form 

1+2 
Ae„ 
Aeo 

R^ 
Ro 

+ AeM 

Ae0 "*r 
The scattering from these square perturbations can be used to verify the numerical results 
obtained from our computer code implementing the spectral method. A comparison between 
our numerical results and the theoretical predictions of Eqs. (40) and (41) is shown in Fig. 3. 
In these simulations, the dielectric constant of the medium is eo = 1.8225, while the dielectric 
constant perturbations for the cytoplasm and the nucleus are Aeo = 0.0544 and Ae„ = 0.1096, 
respectively. The accuracy of our numerical method in this case is clearly demonstrated in 
Fig. 3, where the numerical simulation results show good agreement with the theoretical 
calculations. 

Scattering from a 3-D Homogeneous Sphere 

The diffraction of a plane monochromatic wave by a homogeneous sphere with a zero 
thickness interface (no coating on sphere) can be calculated within the framework of Mie 
theory [25, 26]. Mie theory exactly solves Maxwell's equations in three spatial dimensions for 
all components of the electromagnetic field both inside and outside the sphere. In Mie theory, 
the electromagnetic fields are expressed in terms of infinite series expansions. These 
expansions can be significantly simplified when the distance r from the scattering sphere is 
much larger than the laser wavelength Xm in the medium surrounding the sphere. When the 
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incident light is linearly polarized, the scattered light intensity |5|2 can be determined from 

E2n+1   , ,      i 

n       * 

where n„ = -{\/sxnQ)dPn/dQ, %,, = -d2P„/dö2, andP,, are the Legendre polynomials of 
order n. The coefficients a„ and b„ are given by 

im|/„ (IHX) Vn (x) - y» (*)< (wx) 

\|/„ (mx)\|/„ (x) - my,,(x)<(wix) 
(44) " " yn{mx)%n{x)-mln{xWn{rnx) ' 

where \|/„ and £„ are the Ricatti-Bessel functions, x = k„,a, m = *,/**» a is the radius of the 
scattering sphere, and km and *, are the laser wavenumbers outside and inside the scattering 

sphere, respectively. 

Figs. 4 and 5 compare 3-D simulation results and Mie theory predictions for the scattering of a 
plane wave by a homogeneous sphere in two different cases. The agreement is very good for 
scattering angles up to about 30 degrees. This good agreement between our numerical 
simulations and Mie theory is achieved in spite of the fact that the numerical model solves the 
wave equation in the scalar approximation only, whereas Mie theory solves the full Maxwell's 
equations (for all six components of the electromagnetic field). We may conclude that the 
scalar wave equation is an effective approximation to the full Maxwell equations for moderate 
scattering angles that are of practical importance for applications such as flow cytometry. The 
scalar wave approximation is valid because in the case of small-angle scattering, the 
longitudinal component of the electric field E and V • E are both small, so the last term on the 
left-hand side of the full wave equation [Eq. (7)] can be neglected. For larger scattering angles, 
the scalar wave approximation breaks down, since the term with V • E becomes comparable in 
magnitude to the second and third terms on the left-hand side of Eq. (7). 

Applications and Discussion  

The previous two sections dealt with the development of an algorithm upon which our 
simulations are based and the implementation and verification of the computer code. In this 
section, we present some preliminary two-dimensional and three-dimensional simulation 
results of laser light scattering from biological cells to demonstrate some of the potential 

applications. 

The biological cell with typical size in the range of 10-30 /an consists of various organelles 
immersed in a cytoplasm, all of which are enclosed within a cell wall [27]. The largest 
organelle in the cell is usually the nucleus, whose size ranges typically between 3 and 10 /an 
[28]. Since we intend to model laser light scattering in biological cells, we require values for 
the index of refraction of each cell component. The cell is defined by assigning electric 
permittivity values (or, equivalently, refractive index values) to each cell component. The 
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values listed in Table 1 were taken from the literature, and are used in all simulations in this 
report. 

Cell component Refractive index Reference 
Surrounding medium 1.35 [29] 
Cytoplasm 1.37 [30] 
Nucleus 1.39 [30] 
Mitochondria 1.42 [31] 

Table 1: The values for index of refraction of various cell components which are used in the simulations. The 

medium surrounding the cell is assumed to be water. 

Two-Dimensional Simulation Results 

Although they cannot describe the "real world", results from simulations in two dimensions 
are nevertheless useful in obtaining qualitative predictions for the behaviour of certain 
systems. The 2-D code is computationally more efficient than the 3-D code, and is 
advantageous in that memory requirements are modest. Nevertheless, it is expected that the 
2-D scattering solutions from heterogeneous biological cells will exhibit qualitatively similar 
trends to the more complex 3-D solutions. In the 2-D case, we will focus on plane-wave 
scattering from both single and multiple biological cells in the sampling volume. 

In light scattering from cells, it is important to understand the role of a cell's nucleus on the 
scattering intensity pattern. To this end, the first set of simulations was designed to 
demonstrate how the size of the nucleus in a cell contributes to scattering. Three types of 
biological cell morphologies were chosen for our 2-D simulations: namely, a cell without a 
nucleus, a cell with a normal-size nucleus of diameter D„ = 3 /mi, and a cell with a large 
nucleus of diameter D„ — 6 /mi (for example, it is known that cancerous cells are characterized 
by a large nuclear-to-cytoplasmic volume ratio [32]). For our simulations, the biological cell 
diameter in all three cases is taken to be Do — 11 /um, which is within the range of typical 
biological cell sizes cited above (more, specifically, this size is typical for an animal cell, but is 
generally larger than a bacterial cell). The dielectric constant (or, electric permittivity) e is 
related to the index of refraction Nby t — N2. Therefore, using the values from Table 1, we 
know that the dielectric constant of the surrounding medium (water) is Eo = 1.8225. Similarly, 
we find that for the cytoplasm, e = 1.8769, while for the nucleus e = 1.9321. The incident 
laser light is assumed to be a monochromatic plane wave with wavelength Xo = 1 Mm (near 
infrared region). The dependence of the scattered light intensity on the scattering angle is 
shown on a linear scale in Fig. 6(a) and on a logarithmic scale in Fig. 6(b). The transmitted 
component, which is the large peak at 0 degree in Fig. 6(b), is removed by setting the intensity 
at 0 degree equal to its neighbouring point intensity in Fig. 6(a). 

From Fig. 6, it is clear that the dominant feature of the scattering pattern is contributed by the 
forward (small-angle) scattering. Three different regions can be identified in the scattering 
pattern in Fig. 6. First, the angular interval from 0 to 0.25 degrees corresponds to the angular 
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width of the incident light. The large scattering intensity over this range simply represents the 
signal from the incident light that is not scattered. The second region, which extends from 0.25 
to Go « 4 degrees, contains the main part of the scattered light intensity from the biological 
cell. The width of this interval, characterized by the value of 90, is determined by the ratio of 
the typical cell size to the laser wavelength in the surrounding medium. A cell with a large 
nucleus scatters more light than a cell with a normal nucleus, while a cell with a normal 
nucleus scatters more light than a cell without a nucleus. This is consistent with the predictions 
of linear perturbation theory [Eqs. (41) and (42)] and with the FDTD numerical results of [12]. 
Finally, for angles larger than 60 « 4 degrees, the scattering amplitude decreases rapidly with 
increasing scattering angle, so that the large-angle scattering intensity is small in magnitude. 

In many realistic situations, the laser light propagates through a medium (sampling volume) 
with many scattering objects (scatterers). For example, a sampling volume probed by the laser 
light may contain many biological cells. Therefore, the problem of light scattering by an 
ensemble of identical scatterers is of fundamental importance. Next, the scattering pattern of a 
scattering volume containing many scattering objects will be described and compared to the 
scattering pattern of a single scatterer. In our 2-D simulations, the number of randomly 
distributed scattering objects in the simulation region was varied from 1 to 90. The scattering 
objects are assumed to be homogeneous spheres each with a diameter of Do = 7 /mi and 
permittivity of £ = 1.8769. The permittivity of the surrounding medium (water) is assumed to 
be e0 = 1.8225. The incident light is taken to be a monochromatic plane wave with a 
wavelength Xo = 1 fim. 

Fig. 7 illustrates the typical form of the relationship between the scattering intensity and the 
scattering angle for the case of 10 random scatterers and of a single scatterer in the simulation 
domain. It is readily seen that the scattering intensity from 10 scatterers does not have the 
regular pattern of minima and maxima that is observed for laser light scattering from only a 
single scattering center. Not surprisingly, the scattering intensity, averaged over an angular 
interval of a few degrees, is several times larger for the 10 scatterer case than for the single 
scatterer case. The increase in the scattering intensity with an increasing number of scatterers 
in the sampling volume is observed at both small and large scattering angles. One can 
conclude from Fig. 7 that the increase in the number of scatterers changes the magnitude of the 
scattering intensity, but although the broad characteristic angular features of the scattering 
pattern are roughly unchanged compared to that of a single scatterer it is seen that the random 
distribution of the multiple scatterers results also in a complex microstructure being 
superimposed on the general scattering pattern. 

The dependence of scattering power and scattering angle on the number of scatterers is 
illustrated in Figs. 8(top) and (bottom), which combine results corresponding to two different 
lengths of the simulation region; namely, Lx = 160 /an and Lx = 320 /im. Fig. 8(top) shows the 
fraction of the scattered power (i.e., the power of light propagating outside the incident beam 
optics) as a function of the number of scatterers. The scattered power varies from about 4% for 
a single scatterer to over 90% for 90 scattering centers. From Fig. 8(top), it is evident that the 
scattered power does not depend on the length of the simulation region (sampling volume), but 
only on the number of scatterers contained in the sampling volume. The scattered power is 
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nearly linearly dependent on the number of scatterers in the sampling volume [cf. Fig. 8(top)]. 

The angular width of the scattered light can be characterized by the average scattering angle 
(0), defined as 

'/02ß(0)rf0^1/2 

<45> <■» = . ImM 

where Q is the transmitted power per unit angle. Fig. 8(bottom) shows the dependence of the 
average scattering angle (9) on the number of scatterers. It is evident from this figure that (0) 
changes only slightly (by no more than about 25%) when the number of scatterers changes 
from 1 to 90. The small dependence of the characteristic scattering angle (0) on number of 
scatterers is consistent with the angular spectrum of the scattering intensity that showed an 
increase in the amount of scattering without essential changes in the angular spectrum 
[cf. Fig. 7]. 

It has been demonstrated that the spectral method can be applied to model laser light scattering 
from scattering volumes that contain a single biological cell or a large number of biological 
cells. In the case of laser light scattering from a single biological cell, the most significant 
features of the angular distribution of the scattered light from various cells occur at small 
angles. Cells containing large nuclei have more scattering power at small angles compared to 
cells containing normal-sized nuclei. The amplitude of the scattered light decreases even 
further for cells without a nucleus. In the case of scattering from multiple cells, the simulation 
results show that the fraction of the scattered power depends on the number of scatterers and 
not on the size of the simulation region. In fact, the fraction of the scattered power is almost 
linearly proportional to the number of scatterers. Finally, the scattering pattern from many 
cells still roughly retains the angular distribution characteristics of single cell forward 
scattering, but with a high frequency modulation due to interference effects. 

Three-Dimensional Simulation Results 

Since the three-dimensional model more closely describes real-world applications, the results 
from the 3-D simulations are very useful in obtaining quantitative predictions for the behaviour 
of laser-cell interactions. In consequence, these results have many potential applications not 
the least of which is to allow one to assess (diagnose) biological cell morphology from light 
scattering measurements such as those obtained in flow cytometry measurements. The latter 
application can lead potentially to improved detection performance for BW agents. 

In the 3-D case, the incident laser light profile can either take the form of a plane wave or, 
more realistically, that of a Gaussian beam. In this subsection, the influence of cell size and 
nucleus size on the scattering intensity are studied. Figs. 9-12 show the angular spectra of 
light scattered by a concentric spherical cell in 3-D numerical simulations. The angular range 
shown in Figs. 9-12 is up to 45 degrees away from the direction of incident light propagation. 
Fig. 9 shows the angular spectra of scattered light for the case when the incident laser light is a 
monochromatic plane wave with wavelength Xo = 1 fim. The length of the simulation region is 
40^o in the direction of light propagation (^-direction) and 80Xo in each of the two transverse 
directions (y- and z-directions). In Fig. 9, three types of cells are used in our 3-D simulations; 
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namely, a cell without a nucleus, a cell with a normal-sized nucleus (the diameter of the 
nucleus D„ = 3 /an), and a cell with a large nucleus (the diameter of the nucleus D„ = 6 /an). 
The cell diameter in all cases is D0 = 11 /on. The refractive index of the surrounding medium 
is assumed to be No = yßö = 1 -35. The heterogeneous cell is modelled as a concentric 
spherical geometry (cytoplasm plus nucleus) with refractive indices of iV = 1.37 and 1.39 for 
the cytoplasm and nucleus, respectively. A spherical nucleus is located at the center of the 

spherical cell. 

Fig. 10 shows the angular scattering spectra for cells without a nucleus, but with different 
diameters (sizes); namely, for D0 = 11 /on, Do = 7 /an, and D0 = 5 /on. The scattering 
intensity patterns in Figs. 9 and 10 have sharp maxima at zero angle, corresponding to the 
unscattered (transmitted) light. In our simulations with a plane wave, only a small fraction of 
light is scattered because the cell volume occupies only a small fraction of the simulation 
region. Figs. 9 and 10 clearly show that the scattered light spectra have a characteristic width 
of a few degrees and that this width is consistent with the cell size; viz.. the smaller the cell 
size, the larger the angular width of the main lobe of the scattered intensity pattern. In fact, the 
first minimum in the scattering pattern is approximately determined by the ratio of the incident 
laser wavelength and the diameter of the cell. For example, the three cases of cell diameter 
shown in Fig. 10 have minima at (1/11) x 57.3° « 5.2°, (1/7) x 57.3° « 8.2°, and 
(1/5) x 57.3° « 11.4°, respectively, for biological cells with diameters of 11, 7, and 5 /an. 
This observation is consistent (approximately or better) with diffraction theory (e.g., the 
intensity distribution of diffraction from a spherical particle of diameter d will have have its 
first minimum roughly at angle 0 « X/d, where X is the wavelength of the incident light beam 
which is consistent with the results shown in Fig. 10). 

Figs. 11 and 12 show the angular spectra of scattered light in the case when the incident laser 
light is a Gaussian beam with a wavelength of Xo = 1.0/im and optical /-numbers off/3 
(Fig. 11) and //10 (Fig. 12). The results of Fig. 11 are for scattering from homogeneous and 
nucleated spherical cells each with a diameter of 11 /im, whereas those of Fig. 12 are for 
homogeneous spherical cells of different diameters. By comparing Figs. 11 and 12 with Figs. 9 
and 10, it can be seen that in the case of a Gaussian beam, the amount of scattered light is 
much larger than in the case of a plane wave. This is partially due to a stronger concentration 
of the total light beam on a cell. The amount of scattered light can provide information about 
the permittivity of a cell. This information, combined with the information on the cell size 
from the width of the angular spectrum, allows a characterization of the basic cellular features. 

Figs. 11 and 12 also show that the transmitted component of the incident light dominates the 
angular spectra of the scattered light. In order to analyze properly the scattered light intensity 
pattern, the transmitted component of incident light must be removed. If the incident laser 
light impinges directly on a biological cell and a detector is placed in the forward direction to 
measure the forward scattering light intensity pattern (i.e., the scattering intensity at small 
scattering angles), then it seems that a straightforward solution to the problem would be to 
simply insert an small opaque disc in front of the detector to block the transmitted component 
of the incident light. However, the problem with this simple solution is that diffraction effects 
arising from the disc edge will distort the scattering intensity pattern in the forward direction. 
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A much more elegant solution to this problem would be to use a metal clad leaky waveguide to 
detect the scattered intensity spectrum as described recently in [33]. The basic idea here is to 
measure the light scattering pattern from a bio-target resulting not from the incident laser light 
illumination, but rather from an evanescent wave illumination generated as a guided optical 
wave in a metal clad waveguide device. 

Summary and Conclusions  

This report presents some preliminary results from numerical and theoretical studies of the 
effects of permittivity heterogeneities on light scattering properties from biological cells and, 
in particular, of how two major parts of the cell contribute to this scattering. The spectral 
method is applied to solve two- and three-dimensional scalar wave equations that are used to 
approximate the full set of Maxwell's equations. We have implemented both 2-D and 3-D 
solvers for these scalar wave equations and applied them to the prediction of the scattered 
intensity patterns from biological cells containing heterogeneous organelles. 

The accuracy of the 2-D scalar solver has been verified by comparison with linear perturbation 
theory. Furthermore, Mie theory has been applied to verify the 3-D scalar solver for a 
homogeneous spherical scatterer. A comparison of the scattered intensity for a homogeneous 
spherical scatterer also demonstrated that the 3-D scalar wave equation provides a good 
approximation to the full set of Maxwell's equations for light scattering at small to moderate 
angles (up to about 35°). 

The simulation code can be used to model light scattering from both a single cell or a large 
number of cells in the sampling volume (simulation region). The spectral method used to solve 
the scalar wave equations here allows a very high spatial resolution, limited only by the 
dimensions of the simulation region (box) in the transverse direction. For example, if the laser 
wavelength Xo is 1.0 [im and Ly = Lz = 80Ao, then the resolution is « 0.53 degrees, which is 
comparable to the resolution attainable in experimental measurements using a flow cytometer. 
The methodology accurately models cell inhomogeneities on spatial scales larger than the 
laser wavelength, and treats inhomogeneities with a spatial scale much smaller than the laser 
wavelength as sharp boundaries. The computational requirements for application of a spectral 
method (using the fast Fourier transform algorithm) to the solution of a scalar wave equation 
are much lower than those for solution of the full set of Maxwell's equations using a numerical 
method such a finite-difference time-domain (FDTD) method which would involve discretizing 
Maxwell's curl equations in space and time to give a set of explicit finite-difference equations 
that would need to be stepped in time (with the electric and magnetic fields at each grid point 
in the simulation domain being alternately updated). However, the price paid for this 
computational efficiency is that the current model only solves a scalar wave equation so all 
polarization information is lost. Furthermore, the method cannot resolve explicitly structures 
(e.g., cell membrane) on scales smaller than the probing laser wavelength. 
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Normalized Simulation Time 

Figure 1: The profile of time function f(t) which is used to "turn on" the perturbations. Here the simulation time is 

normalized and a stationary solution is generated in the time interval from 40 to 50 ps. 
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Scattered Light 

Figure 2: The geometry of the simulation region. 
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Figure 3: A comparison of the scattering intensity obtained from both numerical simulations and analytic solutions 

[Eq. (42)] for three types of square cells: for a cell without a nucleus—the dash-dotted line (simulations) and o 

(analytical); for a cell with a normal nucleus—the solid line (simulations) and + (analytical); and for a cell with a large 

nucleus—the dashed line (simulations) and A (analytical). The diameter of the cell is Do = 11 \im, the width of the 

normal nucleus isD„ = 3 fim, and the width of the large nucleus isDn = 6 fim. The dielectric constant perturbation 

for the cytoplasm is Aeo = 0.0544, while that for the nucleus is Ae„ = 0.1096. 

DRDC Suffield TR 2004-187 25 



10       15       20       25       30       35 
scattering angle [degrees] 

40       45 

Figure 4: A comparison of the intensity of scattered light from a homogeneous sphere in three spatial dimensions 

obtained from simulations (solid line) and from Mie theory (dotted line). The diameter of me sphere is D0 = 11 Mm- 

The dielectric constant outside the sphere is eo = 1 and inside the sphere ise= 1.0609. In the simulation result, the 

transmitted component (at 0") has been removed by setting the intensity here equal to its neighbouring point. 
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Figure 5: Another comparison of the intensity of scattered light from a homogeneous sphere in three spatial 

dimensions obtained from simulations (solid line) and from Mie theory (dotted line). The diameter of the sphere is 

DQ= 11 urn. The dielectric constant outside the sphere is £o= 1.8225 and inside the sphere is e= 1.8769. Inthe 

simulation result, the transmitted component (at (?) has been removed by setting the intensity here equal to its 

neighbouring point. 
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Figure 6: Scattering intensity from a two-dimensional single cell with diameter D0 = 11 um on a linear scale (top) 

and a semi-logarithmic scale (bottom). The dash-dotted line corresponds to a cell without nucleus, the solid line 

corresponds to a cell with a normal nucleus of diameter D„ = 3 fim, and the dashed line corresponds to a cell with a 

large nucleus of diameter Dn = 6 \tm. The transmitted component, which is the large peak at CP (bottom), is 

removed by setting the intensity here equal to a neighbouring point intensity (top). 
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Figure 7: Scattering intensity as a function of scattering angle for 10 scatterers (dotted line) and for a single 

scatterer (solid line). 
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Figure 8: The dependence of scattered power (top) and the average scattering angle (bottom) on the number of 

scattering objects. The width of the simulation region is 160 urn, while the length of the simulation region is either 

Lx = 160 (im (o) orLx = 320 urn (*) 
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Figure 9: Scattered light intensity from plane wave for three types of cells: without a nucleus (dotted line), with a 

small nucleus Dn = 3fim (dashed line), and with a large nucleus Dn = 6fim (solid line). In all 3 cases, the cell 

diameter Do — 11 ftm. 
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Figure 10: Scattered light intensity from plane wave for three sizes of cells that do not contain a nucleus: with 

diameter D0 = 11 \im (dotted line), with diameter D0 = 7 urn (solid line) and with diameter D0 = 5 um (dashed line). 
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Figure 11: Scattered intensity from a Gaussian beam with f/3 optics on a logarithmic scale (a) and linear scale (b) 

for three types of cells: without a nucleus (dotted line), with a small nucleus Dn = 3nm (dashed line), and with a 

large nucleus Dn=6fim (solid line). In all cases, the cell diameter is assumed to öe 11 fim and the cell is located in 

center of the focal spot of the laser beam. The incident beam spectrum is given by the solid lines with the * symbol. 
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Figure 12: Scattered intensity from a Gaussian beam with f/10 on a logarithmic scale (a) and linear scale (b) for 

three types of homogeneous spherical cells of different diameters: with diameter D0 = 17 »m (dotted line), diameter 

Do=U»m (dashed line), and diameter D0 = 8 urn (solid line). In all cases, the cell is located in center of the focal 

spot of the laser beam. The incident beam spectrum is given by the solid lines with the • symbol. 
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